Falando nisso, uma dúvida que tenho é sobre o DL-103 da Giannini, alguém ai já abriu um para ver?
Bom, o componente responsável por essa recente enxurrada de delays digitais feitos a mão, é esse da foto abaixo:
Vejam no site do fabricante: www.princeton.com.tw/PT2399
Primeira página do datasheet
Em uma tradução livre, podemos ler na descrição:
"O PT2399 é um CI (circuito integrado), processador de eco de único chip utilizando tecnologia CMOS, que aceita o sinal de entrada de áudio analógico a uma alta taxa de amostragem ADC (Conversor analógico para digital), que transfere o sinal analógico em um fluxo de bits para em seguida armazenar na RAM interna de 44Kbit, depois o processamento de fluxo de bits é de-modulado pelo DAC (Conversor digital para analógico) e por um filtro passa-baixa. O tempo de atraso total é determinado pelo relógio de frequência interno (VCO), e o usuário pode facilmente mudar a frequência de VCO alterando a resistência externa (R).
"O PT2399 é um CI (circuito integrado), processador de eco de único chip utilizando tecnologia CMOS, que aceita o sinal de entrada de áudio analógico a uma alta taxa de amostragem ADC (Conversor analógico para digital), que transfere o sinal analógico em um fluxo de bits para em seguida armazenar na RAM interna de 44Kbit, depois o processamento de fluxo de bits é de-modulado pelo DAC (Conversor digital para analógico) e por um filtro passa-baixa. O tempo de atraso total é determinado pelo relógio de frequência interno (VCO), e o usuário pode facilmente mudar a frequência de VCO alterando a resistência externa (R).
O PT2399 executa baixa distorção (THD<0,5% considerado 0,5Vrms), e baixo
ruído (No<-90dBV). Característica para fins de áudio, disposição de pinos e
circuito de aplicação são otimizados para um fácil layout de placa e vantagens
de redução de custo."
Aqui o datasheet mostra um "fluxograma" de funcionamento:
*
Agora vamos ver o MN3005, famoso delay analógico BBD (Bucket Brigade Devices):
Tradução livre da descrição:
"O MN3005 é a primeira palavra em longo atraso BBD 4096 estágios, 8 vezes mais que os BBD 512 estágios, fabricado usando processo de baixo ruído por entrada canal-P silício.
Sinal de longo tempo de atraso, 205ms podem ser obtidos em 10kHz de frequência de relógio. S/N (sinal/ruído) igual a 75dB. S/N foi aumentado mais de 20dB em comparação a 8 BBD 512 estágios conectados. O MN3005 é adequadamente usado para reverberações e efeitos de eco em instrumentos musicais eletrônicos como: órgão, amplificador de guitarra e sintetizador de música que necessita de um longo tempo de atraso."
"O MN3005 é a primeira palavra em longo atraso BBD 4096 estágios, 8 vezes mais que os BBD 512 estágios, fabricado usando processo de baixo ruído por entrada canal-P silício.
Sinal de longo tempo de atraso, 205ms podem ser obtidos em 10kHz de frequência de relógio. S/N (sinal/ruído) igual a 75dB. S/N foi aumentado mais de 20dB em comparação a 8 BBD 512 estágios conectados. O MN3005 é adequadamente usado para reverberações e efeitos de eco em instrumentos musicais eletrônicos como: órgão, amplificador de guitarra e sintetizador de música que necessita de um longo tempo de atraso."
Diagrama do circuito interno e algumas características:
Considerando as informações básicas acima, vou expor 'por cima' as diferenças entre os dois.
O PT2399 trabalha exatamente como descrito no datasheet, só acrescentando que há um filtro passa-baixa também na entrada do sinal. O filtro na entrada evita basicamente que algum sinal fora da faixa de frequência audível possa ser processado, e pela taxa de amostragem possa ser "confundido" com uma frequência audível e apareça na saída. O filtro na saída é para barrar algum ruído no sinal causado pela frequência de clock. Pela construção, o delay digital tende a ser mais "fiel" ao sinal de entrada dependendo da taxa de amostragem e pelos bits de processamento.
O pai do PT2399, o obsoleto PT2395 (vejam o datasheet PT2395), tem uma resolução de 10 bits nos ADC/DAC, taxa de amostragem de 25kHz (Clock), considerando que para cada 64K de DRAM (vejam a nota *), ele conseguia 0,2s (trabalha no máximo com 256K = 0,8s). Já o PT2399 com 44K de RAM consegue 0,35s (com THD 1%), posso dizer que tanto a resolução dos ADC/DAC e a taxa de amostragem foram diminuídas no PT2399, exemplo:
PT2395 - Resolução conversor AD/DA: 10bits <> Taxa de amostragem: 25kHz
Multiplicando fica 250kHz total de amostragem.
Considerando que o K digital é 1024 e não 1000, o total da mémoria de 64K é 65536bit.
Dividido a memória pela amostragem teremos um pouco mais de 0,2s (65536/250000=0,262s). Temos que ter em mente que o processamento nunca é feito com a memória cheia, por isso o tempo total de atraso é arredondado para 0,2s, se não haveria perda de informação e aumento na distorção em relação ao sinal de entrada, e no caso, a distorção total especificada é 0,4%.
Como o PT2399 diz que consegue um atraso de 347ms, posso crer que a resolução dos conversores é 8bit, e a taxa de amostragem é 16kHz, resultando em uma amostragem total de 128kHz.
Fazendo o calculo da memória 44K (45056bit), dividida pela amostragem: (45056/128000=0,352s), temos os 0,35s.
Obs: Os valores da resolução e taxa de amostragem foram deduzidos por mim, já que o fabricante não os especifica no datasheet, mas pelo cálculo é bem possível que estejam próximos.
*NOTA: DRAM é uma memória dinâmica, a retenção de dados é feita por capacitores (esse processo lembra o do MN3005) , os processadores que as usava são mais simples, pois não precisavam apagar os dados da memória antes de gravar novos. Podia-se até fazer ligações em paralelo de várias DRAM (claro que respeitando o limite desse tipo de processador, que geralmente é de 256K), para obter mais tempo de atraso.
Porém, as DRAM estão obsoletas, e é por esse motivo que os processadores; RDD63H101 usado no DD-2 da BOSS, M50195P, PT2395 e HT8955A entre outros, caíram em desuso...
Para quem tiver interesse, há um distribuidor no bairro do Belém que está cheio do HT8955A no estoque, o problema é achar as DRAM para montar o circuito... Datasheet HT8955A.
Já o MN3005 como o próprio nome diz, Bucket Brigade Devices ("Dispositivo de brigada de baldes"), como visto no diagrama de circuito, o sinal passa de um transistor para outro, e para cada um há um capacitor que retêm o sinal para cada estágio (no caso do MN3005 são 4096 estágios), e é o clock que determina quando a carga retida num estágio passa para o posterior. E esse é o segredo, quanto mais estágios o sinal tiver que passar, maior será o tempo de atraso, claro que isso também depende do clock que fará o controle desse tempo.
Por sua construção, o MN3005 pode trabalhar direto com o sinal puro sem precisar fazer alguma conversão, como os digitais que usam o ADC (entrada) e DAC (saída), porém é óbvio que no meio do caminho, o sinal de alguma forma é alterado, e isso aumenta se o tempo de atraso for maior, tanto que a relação de THD e ruído do MN3005 é um pouquinho pior se compararmos aos delays digitais, e justamente esse é o 'charme' que faz muita gente mesmo hoje em dia buscar um efeito assim, mesmo com tantos módulos de eco com resoluções altíssimas e fieis ao sinal de entrada.
Outra característica, é que os circuitos de filtros passa-baixa não são internos aos BBD's , e precisam ser incluídos no projeto do efeito também pelos motivos listados no PT-2399.
Outro recurso que era usado junto ao circuito de atrasos BBD's, é o 'CI Compandor' (Basicamente um circuito integrado que tem a função de comprimir o sinal para o BBD, e de expandir o sinal de saída do BBD). Um exemplo desse CI é o SA571 Datasheet.
Usando o 'compandor', é possível atenuar o sinal para que o BBD possa trabalhar com uma relação de THD menor, e com isso conseguir estender um pouco mais o tempo de atraso (A exemplo do DM-2 e 3 que com um único MN3005/MN3205 conseguiam 300ms de atraso).
Os primeiros delays digitais também usavam o 'compandor', a exemplo do DD-2 BOSS, mas seu uso era desnecessário pelo fato do modo com que o sinal era trabalhado pelo processador.
Obs: O MN3205 é a versão que funciona com canal-N e tem especificações melhoradas (Usado no DM-3 da BOSS) .
Podemos ver o "gerador de atraso" MN3005, o MN3101 que controla o clock para o BBD, e o compandor SA571 logo abaixo na foto.
Conclusão:
Agora vamos analisar, se o PT2399 consegue produzir o som "parecido" com o MN3005 mesmo processando o sinal de forma totalmente diferente, por que o PT2395 que tinha as especificações melhores não pegou essa fama?
A única resposta plausível, é justamente o fato do PT2399 não conseguir reproduzir o sinal de saída o mais próximo de como ele entrou... Ou seja, ele consegue parecer com um MN3005 porque é um processador de eco simples e com especificações, digamos, ruins em comparação a outros processadores, por isso ele é um componente "barato", fizeram até a memória internamente para diminuir custos...
O PT2399 pode ser uma saída para quem não consegue tem um delay BBD, porém o fato dele ter essa característica não quer dizer que ele é um substituto, pelo contrário, é usar um gato em vez de cão para a caça, quem teve, ou já escutou um delay BBD sabe do que estou falando. O som é incomparável, é como o som de um piano bem temperado em relação ao som seco de um teclado, talvez é por essa razão que esse componente é único, pois é pela "imperfeição" que os nossos ouvidos se atraem, e não pela simetria de um sinal matematicamente montado por um processador.
* Mais uma observação.
Há um 'fabricante handmade' que fez um tap delay digital, provavelmente usando dois PT2399 e um microcontrolador para fazer o controle do clock na função tap. Não estou aqui para falar mal, pelo contrário, o cara trabalha muito bem, e quando produz alguma peça que é 'réplica', faz o certo que é dizer qual o modelo copiado ou usado como base para a construção, diferente de outros handmades por ai...
Porém, o ponto onde quero chegar é o seguinte; ele diz que é o primeiro delay tap tempo handmade brasileiro, mas é óbvio, pois um projeto desse não compensa. Vou explicar:
Não querendo queimar o trabalhão que o cara teve para fazer o pedal, mas já queimando, vamos fazer a seguinte comparação; todo mundo gosta do famoso DD-3 da BOSS, e ele não tem fama de parecer com um analógico, não é mesmo? Se compararmos o tap delay do cara, que deve ser de uns 600ms, com outro tap delay, por exemplo o DGD-2 da Onerr, teremos a mesma faixa de preço $$, só que o da Onerr é tap, hold e vai até 1250ms de atraso com uma resolução de 24bits, enquanto o PT2399 que o cara usou tem uns 8bits... Qual é o mais em conta???
Eu tinha vontade de fazer um projeto próprio de um digital delay, mas de tanto pesquisar, e ver que o Brasil não é o melhor lugar para fazer isso, desisti... Resolvi passar para os delays BBD's, pois são difíceis de achar, apesar que a BOSS relançou o DM-2 com DM-2W, e acabei desistindo novamente, pois pelo preço que ia ficar, ninguém em sã consciência iria comprar...
Conseguiram entender o por quê de ser tão complicado fabricar eletrônicos em casa para vender aqui no Brasil?
O PT2399 trabalha exatamente como descrito no datasheet, só acrescentando que há um filtro passa-baixa também na entrada do sinal. O filtro na entrada evita basicamente que algum sinal fora da faixa de frequência audível possa ser processado, e pela taxa de amostragem possa ser "confundido" com uma frequência audível e apareça na saída. O filtro na saída é para barrar algum ruído no sinal causado pela frequência de clock. Pela construção, o delay digital tende a ser mais "fiel" ao sinal de entrada dependendo da taxa de amostragem e pelos bits de processamento.
O pai do PT2399, o obsoleto PT2395 (vejam o datasheet PT2395), tem uma resolução de 10 bits nos ADC/DAC, taxa de amostragem de 25kHz (Clock), considerando que para cada 64K de DRAM (vejam a nota *), ele conseguia 0,2s (trabalha no máximo com 256K = 0,8s). Já o PT2399 com 44K de RAM consegue 0,35s (com THD 1%), posso dizer que tanto a resolução dos ADC/DAC e a taxa de amostragem foram diminuídas no PT2399, exemplo:
PT2395 - Resolução conversor AD/DA: 10bits <> Taxa de amostragem: 25kHz
Multiplicando fica 250kHz total de amostragem.
Considerando que o K digital é 1024 e não 1000, o total da mémoria de 64K é 65536bit.
Dividido a memória pela amostragem teremos um pouco mais de 0,2s (65536/250000=0,262s). Temos que ter em mente que o processamento nunca é feito com a memória cheia, por isso o tempo total de atraso é arredondado para 0,2s, se não haveria perda de informação e aumento na distorção em relação ao sinal de entrada, e no caso, a distorção total especificada é 0,4%.
Como o PT2399 diz que consegue um atraso de 347ms, posso crer que a resolução dos conversores é 8bit, e a taxa de amostragem é 16kHz, resultando em uma amostragem total de 128kHz.
Fazendo o calculo da memória 44K (45056bit), dividida pela amostragem: (45056/128000=0,352s), temos os 0,35s.
Obs: Os valores da resolução e taxa de amostragem foram deduzidos por mim, já que o fabricante não os especifica no datasheet, mas pelo cálculo é bem possível que estejam próximos.
*NOTA: DRAM é uma memória dinâmica, a retenção de dados é feita por capacitores (esse processo lembra o do MN3005) , os processadores que as usava são mais simples, pois não precisavam apagar os dados da memória antes de gravar novos. Podia-se até fazer ligações em paralelo de várias DRAM (claro que respeitando o limite desse tipo de processador, que geralmente é de 256K), para obter mais tempo de atraso.
Porém, as DRAM estão obsoletas, e é por esse motivo que os processadores; RDD63H101 usado no DD-2 da BOSS, M50195P, PT2395 e HT8955A entre outros, caíram em desuso...
Para quem tiver interesse, há um distribuidor no bairro do Belém que está cheio do HT8955A no estoque, o problema é achar as DRAM para montar o circuito... Datasheet HT8955A.
PT2395 mais sua DRAM 256K, usados em um Danelectro DJ-17 PB&J Delay (Total de 800ms).
*
Já o MN3005 como o próprio nome diz, Bucket Brigade Devices ("Dispositivo de brigada de baldes"), como visto no diagrama de circuito, o sinal passa de um transistor para outro, e para cada um há um capacitor que retêm o sinal para cada estágio (no caso do MN3005 são 4096 estágios), e é o clock que determina quando a carga retida num estágio passa para o posterior. E esse é o segredo, quanto mais estágios o sinal tiver que passar, maior será o tempo de atraso, claro que isso também depende do clock que fará o controle desse tempo.
Por sua construção, o MN3005 pode trabalhar direto com o sinal puro sem precisar fazer alguma conversão, como os digitais que usam o ADC (entrada) e DAC (saída), porém é óbvio que no meio do caminho, o sinal de alguma forma é alterado, e isso aumenta se o tempo de atraso for maior, tanto que a relação de THD e ruído do MN3005 é um pouquinho pior se compararmos aos delays digitais, e justamente esse é o 'charme' que faz muita gente mesmo hoje em dia buscar um efeito assim, mesmo com tantos módulos de eco com resoluções altíssimas e fieis ao sinal de entrada.
Outra característica, é que os circuitos de filtros passa-baixa não são internos aos BBD's , e precisam ser incluídos no projeto do efeito também pelos motivos listados no PT-2399.
Outro recurso que era usado junto ao circuito de atrasos BBD's, é o 'CI Compandor' (Basicamente um circuito integrado que tem a função de comprimir o sinal para o BBD, e de expandir o sinal de saída do BBD). Um exemplo desse CI é o SA571 Datasheet.
Usando o 'compandor', é possível atenuar o sinal para que o BBD possa trabalhar com uma relação de THD menor, e com isso conseguir estender um pouco mais o tempo de atraso (A exemplo do DM-2 e 3 que com um único MN3005/MN3205 conseguiam 300ms de atraso).
Os primeiros delays digitais também usavam o 'compandor', a exemplo do DD-2 BOSS, mas seu uso era desnecessário pelo fato do modo com que o sinal era trabalhado pelo processador.
Obs: O MN3205 é a versão que funciona com canal-N e tem especificações melhoradas (Usado no DM-3 da BOSS) .
Podemos ver o "gerador de atraso" MN3005, o MN3101 que controla o clock para o BBD, e o compandor SA571 logo abaixo na foto.
Conclusão:
Agora vamos analisar, se o PT2399 consegue produzir o som "parecido" com o MN3005 mesmo processando o sinal de forma totalmente diferente, por que o PT2395 que tinha as especificações melhores não pegou essa fama?
A única resposta plausível, é justamente o fato do PT2399 não conseguir reproduzir o sinal de saída o mais próximo de como ele entrou... Ou seja, ele consegue parecer com um MN3005 porque é um processador de eco simples e com especificações, digamos, ruins em comparação a outros processadores, por isso ele é um componente "barato", fizeram até a memória internamente para diminuir custos...
O PT2399 pode ser uma saída para quem não consegue tem um delay BBD, porém o fato dele ter essa característica não quer dizer que ele é um substituto, pelo contrário, é usar um gato em vez de cão para a caça, quem teve, ou já escutou um delay BBD sabe do que estou falando. O som é incomparável, é como o som de um piano bem temperado em relação ao som seco de um teclado, talvez é por essa razão que esse componente é único, pois é pela "imperfeição" que os nossos ouvidos se atraem, e não pela simetria de um sinal matematicamente montado por um processador.
* Mais uma observação.
Há um 'fabricante handmade' que fez um tap delay digital, provavelmente usando dois PT2399 e um microcontrolador para fazer o controle do clock na função tap. Não estou aqui para falar mal, pelo contrário, o cara trabalha muito bem, e quando produz alguma peça que é 'réplica', faz o certo que é dizer qual o modelo copiado ou usado como base para a construção, diferente de outros handmades por ai...
Porém, o ponto onde quero chegar é o seguinte; ele diz que é o primeiro delay tap tempo handmade brasileiro, mas é óbvio, pois um projeto desse não compensa. Vou explicar:
Não querendo queimar o trabalhão que o cara teve para fazer o pedal, mas já queimando, vamos fazer a seguinte comparação; todo mundo gosta do famoso DD-3 da BOSS, e ele não tem fama de parecer com um analógico, não é mesmo? Se compararmos o tap delay do cara, que deve ser de uns 600ms, com outro tap delay, por exemplo o DGD-2 da Onerr, teremos a mesma faixa de preço $$, só que o da Onerr é tap, hold e vai até 1250ms de atraso com uma resolução de 24bits, enquanto o PT2399 que o cara usou tem uns 8bits... Qual é o mais em conta???
Eu tinha vontade de fazer um projeto próprio de um digital delay, mas de tanto pesquisar, e ver que o Brasil não é o melhor lugar para fazer isso, desisti... Resolvi passar para os delays BBD's, pois são difíceis de achar, apesar que a BOSS relançou o DM-2 com DM-2W, e acabei desistindo novamente, pois pelo preço que ia ficar, ninguém em sã consciência iria comprar...
Conseguiram entender o por quê de ser tão complicado fabricar eletrônicos em casa para vender aqui no Brasil?